
16-October-2007 © Copyright Ian D. Romanick 2007

Computer Graphics Programming I

Agenda:
● Turn in assignment #1

● Quiz #1!!!

● Projections

● Lighting
• Lighting models
• Lights
• Materials
• Shading models

● Projected shadows

16-October-2007 © Copyright Ian D. Romanick 2007

Projections
After the modelview matrix is applied, points are

still 3D.
● The screen is 2D.

● Camera parameters (e.g., field of view) need to be
applied.

Two steps remain.

1) Apply the GL_PROJECTION matrix.

2) Perform the perspective divide.

16-October-2007 © Copyright Ian D. Romanick 2007

Types of Projection
Perspective

● Simulates visual foreshortening caused by the way
light projects onto the back of the eye.

● Represents the view volume with a frustum (a
pyramid with the top cut off).

● The real work is done by dividing X and Y by Z.

Orthographic
● Represents the view volume with a cube.

● Also called parallel projection because lines that are
parallel before the projection remain parallel after.

16-October-2007 © Copyright Ian D. Romanick 2007

Creating Perspective Projections

● The size of the plane
and the distance to
the plane implicitly
determine the field of
view.

Use glFrustum to specify the corners of the
projection plane and the distance to the near
and far planes.

16-October-2007 © Copyright Ian D. Romanick 2007

Creating Perspective Projections (cont.)
gluPerspective

explicitly sets the field
of view.

aspect=
w
h

fovy=

16-October-2007 © Copyright Ian D. Romanick 2007

References
http://en.wikipedia.org/wiki/3D_projection (esp. Third step:

perspective transform).

http://en.wikipedia.org/wiki/Orthographic_projection_%28geometry%29

http://en.wikipedia.org/wiki/Isometric_projection

http://en.wikipedia.org/wiki/3D_projection
http://en.wikipedia.org/wiki/Orthographic_projection_%28geometry%29
http://en.wikipedia.org/wiki/Isometric_projection

16-October-2007 © Copyright Ian D. Romanick 2007

Lighting in 3D
Three types of reflection that we usually care

about.

16-October-2007 © Copyright Ian D. Romanick 2007

Lighting in 3D
Three types of reflection that we usually care

about.
● Ambient – Most “fake” of the three. Approximates

scattered, omnidirectional light in the scene.

16-October-2007 © Copyright Ian D. Romanick 2007

Lighting in 3D
Three types of reflection that we usually care

about.
● Ambient – Most “fake” of the three. Approximates

scattered, omnidirectional light in the scene.

● Diffuse – Represents light scattered uniformly by
tiny microfacets on the surface.

16-October-2007 © Copyright Ian D. Romanick 2007

Lighting in 3D
Three types of reflection that we usually care

about.
● Ambient – Most “fake” of the three. Approximates

scattered, omnidirectional light in the scene.

● Diffuse – Represents light scattered uniformly by
tiny microfacets on the surface.

● Specular – Perfect, mirror-like reflection from a
surface.

16-October-2007 © Copyright Ian D. Romanick 2007

Ambient
Sets the base light level in the scene.

● I
a
 is the intensity of the reflected ambient light.

● K
a
 is the ambient reflection property of the surface.

● L
a
 is the ambient light level in the scene.

I a=K a×La

16-October-2007 © Copyright Ian D. Romanick 2007

Diffuse
Occurs when light hits a surface and is

scattered equally in all directions.
● Accounts for most of the lighting in the scene.

● Also called “Lambertian reflection” because it is
based on Lambert's Cosine Law.

● Calculated for each light.

● Independent of viewing direction.

I d=K d×Ld×max L⋅N ,0

16-October-2007 © Copyright Ian D. Romanick 2007

Lambert's Lighting Model
What makes the equation work?

I d=K d×Ld×max L⋅N ,0

16-October-2007 © Copyright Ian D. Romanick 2007

Lambert's Lighting Model
What makes the equation work?

As the angle between the normal and the light
decreases, the amount of light reflected by the
surface increases.
● The more directly the surfaces faces the light, the

more light hits the surface.

I d=K d×Ld×max L⋅N ,0

16-October-2007 © Copyright Ian D. Romanick 2007

Specular
Light is reflected from a

surface primarily in one
direction.
● Observed light intensity

depends on viewing
direction.

● Developed by Bui-Tuong
Phong in 1973.

● R is “ideal” reflection
vector.

● Very expensive!

R=2N⋅LN−L
I s=K s×Ls×max R⋅V ,0

n

16-October-2007 © Copyright Ian D. Romanick 2007

Phong's Lighting Model
What makes the equation work?

R=2N⋅LN−L
I s=K s×Ls×max R⋅V ,0

n

16-October-2007 © Copyright Ian D. Romanick 2007

Phong's Lighting Model
What makes the equation work?

As the angle between the ideal reflection
vector, R, and the viewer, V, decreases, the
light becomes more intense.

R=2N⋅LN−L
I s=K s×Ls×max R⋅V ,0

n

16-October-2007 © Copyright Ian D. Romanick 2007

Improved Specular
James Blinn improved

Phong's model in 1977.
● Much less expensive.

● Slightly different results.
• Both are approximations!

● Lighting model used by
OpenGL.

● H is the vector half-way
between the light and
viewer.

H=
VL

2
I s=K s×Ls×max N⋅H ,0

n

16-October-2007 © Copyright Ian D. Romanick 2007

Blinn's Lighting Model
What makes the equation work?

H=
VL

2
I s=K s×Ls×max N⋅H ,0

n

16-October-2007 © Copyright Ian D. Romanick 2007

Blinn's Lighting Model
What makes the equation work?

Key observation is that H approaches N when V
approaches R (Phong's ideal reflection vector).

H=
VL

2
I s=K s×Ls×max N⋅H ,0

n

16-October-2007 © Copyright Ian D. Romanick 2007

Shininess
What is the magic “n”

factor in both
equations?

H=
VL

2
I s=K s×Ls×max N⋅H ,0

n

R=2N⋅LN−L
I s=K s×Ls×max R⋅V ,0

n

16-October-2007 © Copyright Ian D. Romanick 2007

Shininess
What is the magic “n”

factor in both
equations?
● Controls the “size” of

the specular highlight.

● As n increases, the
highlight gets smaller.
• Because the result of

the dot-product factor
gets smaller faster.

H=
VL

2
I s=K s×Ls×max N⋅H ,0

n

R=2N⋅LN−L
I s=K s×Ls×max R⋅V ,0

n

16-October-2007 © Copyright Ian D. Romanick 2007

References
http://www.delphi3d.net/articles/viewarticle.php?article=phong.htm

http://en.wikipedia.org/wiki/Lambertian_reflectance

http://www.delphi3d.net/articles/viewarticle.php?article=phong.htm
http://en.wikipedia.org/wiki/Lambertian_reflectance

16-October-2007 © Copyright Ian D. Romanick 2007

Break

16-October-2007 © Copyright Ian D. Romanick 2007

Controlling Lights in OpenGL
OpenGL lights are named GL_LIGHT0 through
GL_LIGHT7.
● GL_LIGHT0 + 3 has the same numeric value as
GL_LIGHT3.

Light parameters are set via glLight.
glLightf(GLenum light, GLenum param, GLfloat
value);

glLightfv(GLenum light, GLenum param, const
GLfloat *values);

● values points to either 1 or 4 elements depending
on param.

16-October-2007 © Copyright Ian D. Romanick 2007

Controlling Lights in OpenGL (cont.)
Lighting calculations need to be enabled.

Each light also needs to be enabled.
● Both are done with glEnable.

● Each can be disabled with glDisable.

16-October-2007 © Copyright Ian D. Romanick 2007

Example
void setup_lights(void)
{
 glEnable(GL_LIGHTING);

 glEnable(GL_LIGHT0);
 glLightfv(GL_LIGHT0, GL_AMBIENT, ambient0);
 glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse0);
 glLightfv(GL_LIGHT0, GL_SPECULAR, specular0);
 glLightfv(GL_LIGHT0, GL_POSITION, position0);

 glEnable(GL_LIGHT1);
 glLightfv(GL_LIGHT1, GL_AMBIENT, ambient1);
 glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuse1);
 glLightfv(GL_LIGHT1, GL_SPECULAR, specular1);
 glLightfv(GL_LIGHT1, GL_POSITION, position1);
}

16-October-2007 © Copyright Ian D. Romanick 2007

Lights are transformed too!
The current modelview matrix when the light's

position is set is used to transform the light.
glLightfv(GL_LIGHT0, GL_POSITION, position);
glRotatef(angle, 0.0, 0.0, 1.0);
glTranslatef(dist_x, dist_y, dist_z);
glLightfv(GL_LIGHT1, GL_POSITION, position);

● Light 0 and light 1 will be at different positions!

16-October-2007 © Copyright Ian D. Romanick 2007

Visualizing a Light
Drawing a point at the light's position can help

debug lighting problems.
set_light_transform();
glLightfv(light_name, GL_POSITION, light_pos);

glDisable(GL_LIGHTING);
glPointSize(5.0);
glBegin(GL_POINTS);
glColor3ub(0xff, 0xff, 0x00);
glVertex3fv(light_pos);
glEnd();

glEnable(GL_LIGHTING);

16-October-2007 © Copyright Ian D. Romanick 2007

Surface Material Properties
glMaterial[fi][v] is used to control

attributes of the surface.
● Cannot be called within begin / end.

glMaterialfv(GL_FRONT, GL_AMBIENT, Ka);
glMaterialfv(GL_FRONT, GL_DIFFUSE, Kd);
glMaterialfv(GL_FRONT, GL_SPECULAR, Ks);
glMaterialf(GL_FRONT, GL_SHININESS, n);
● Can set different parameters for the front and back

sides of a surface.

16-October-2007 © Copyright Ian D. Romanick 2007

Scaling = Trouble
Normals get transformed by the inverse

transpose of the modelview matrix.
● Really, this is just the upper 3x3 portion...without

the translation part.

 If the modelview matrix has a scaling factor, the
normals will also get scaled.
● So?

16-October-2007 © Copyright Ian D. Romanick 2007

Scaling = Trouble
Normals get transformed by the inverse

transpose of the modelview matrix.
● Really, this is just the upper 3x3 portion...without

the translation part.

 If the modelview matrix has a scaling factor, the
normals will also get scaled.
● So?

● only works if N and L are unit length,
and scaling ruins that.
N⋅L=cos

16-October-2007 © Copyright Ian D. Romanick 2007

Scaling = Trouble (cont.)
OpenGL has two ways to fix this.

● If the original normals are unit length and the
scaling is uniform (i.e., S

x
 = S

y
 = S

z
) enable

GL_RESCALE_NORMAL.

● In all other cases, enable GL_NORMALIZE.

Neither is free, but GL_RESCALE_NORMAL is
much less expensive.

16-October-2007 © Copyright Ian D. Romanick 2007

Scaling = Trouble (cont.)
OpenGL has two ways to fix this.

● If the original normals are unit length and the
scaling is uniform (i.e., S

x
 = S

y
 = S

z
) enable

GL_RESCALE_NORMAL.

● In all other cases, enable GL_NORMALIZE.

Neither is free, but GL_RESCALE_NORMAL is
much less expensive.
● Analyze transformation matrix and calculate the

inverse scale factor once, perform 1 vector multiply
per point vs. a dot-product, a square root, and a
divide per point.

16-October-2007 © Copyright Ian D. Romanick 2007

Light Source Attenuation
Real lights don't have infinite range.

● Objects farther away receive less light energy.

Three different attenuation modes in OpenGL:

● GL_CONSTANT_ATTENUATION (k
c
)

● GL_LINEAR_ATTENUATION (k
l
)

● GL_QUADRATIC_ATTENUATION (k
q
)

attenuation=
1

kck l×dkq×d
2

16-October-2007 © Copyright Ian D. Romanick 2007

Spot Lights
Most real lights have a direction and a “field of

view”.
● Objects outside the field of view receive no light.

● Objects far from the direction receive less light.
• Works like diffuse lighting, but instead of , we use

 (D the direction the light is pointing).

Controlled by 3 parameters:
● GL_SPOT_DIRECTION
● GL_SPOT_CUTOFF – 180° is a point light
● GL_SPOT_EXPONENT – works like n for specular

N⋅L
−L⋅D

16-October-2007 © Copyright Ian D. Romanick 2007

Shading Models
Three common shading models:

● Flat – each polygon gets a single color value.

● Gouraud – each vertex gets a color, and those
colors are interpolated across the polygon.

● Phong – Vertex properties (i.e., normals) are
interpolated across the polygon and lighting is
calculated per fragment.

The first two can be selected in OpenGL by via
glShadingModel.
● GL_FLAT for flat, and GL_SMOOTH for Gouraud.

16-October-2007 © Copyright Ian D. Romanick 2007

Break

16-October-2007 © Copyright Ian D. Romanick 2007

Planar Shadows
Simplest shadows are those projected onto a

flat plane
● As the description implies, this can be done using a

projection matrix

16-October-2007 © Copyright Ian D. Romanick 2007

Plane equation
Give a point on a plane, p, and the normal of

that plane, n, calculate the plane equation:

d=−n⋅p
n⋅pid=0

16-October-2007 © Copyright Ian D. Romanick 2007

Projection onto a plane
Given a plane, defined by n and d, and a

projection point, p, create a matrix that projects
an arbitrary point onto that plane.
● Like the projection of the view plane and the eye

point.

M=[
n⋅pd−px nx −px ny −px nz −px d

−py nx n⋅pd− py ny −py nz −py d

−p z nx −p z ny n⋅pd− pz nz −pz d

−nx −ny −n z n⋅p]

16-October-2007 © Copyright Ian D. Romanick 2007

Planar shadows
 If the plane is the ground plane, and the

projection point is the light, M is a matrix that
projects the shadow of world-space geometry
onto the ground.

But where do we insert M into the
transformation stack?

16-October-2007 © Copyright Ian D. Romanick 2007

Planar shadows
 If the plane is the ground plane, and the

projection point is the light, M is a matrix that
projects the shadow of world-space geometry
onto the ground.

But where do we insert M into the
transformation stack?
● After the object-to-world space transformations, but

before the world-to-eye space transformation.

16-October-2007 © Copyright Ian D. Romanick 2007

Next week...
Using color-materials.

 Introduction to texture mapping
● Loading texture data

● Getting a simple texture on a polygon

Assignment #2 due.

Assignment #3 assigned.

16-October-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

