
16-October-2007 © Copyright Ian D. Romanick 2007

Computer Graphics Programming I

Agenda:
● Turn in assignment #1

● Quiz #1!!!

● Projections

● Lighting
• Lighting models
• Lights
• Materials
• Shading models

● Projected shadows

16-October-2007 © Copyright Ian D. Romanick 2007

Projections
After the modelview matrix is applied, points are

still 3D.
● The screen is 2D.

● Camera parameters (e.g., field of view) need to be
applied.

Two steps remain.

1) Apply the GL_PROJECTION matrix.

2) Perform the perspective divide.

16-October-2007 © Copyright Ian D. Romanick 2007

Types of Projection
Perspective

● Simulates visual foreshortening caused by the way
light projects onto the back of the eye.

● Represents the view volume with a frustum (a
pyramid with the top cut off).

● The real work is done by dividing X and Y by Z.

Orthographic
● Represents the view volume with a cube.

● Also called parallel projection because lines that are
parallel before the projection remain parallel after.

16-October-2007 © Copyright Ian D. Romanick 2007

Creating Perspective Projections

● The size of the plane
and the distance to
the plane implicitly
determine the field of
view.

Use glFrustum to specify the corners of the
projection plane and the distance to the near
and far planes.

16-October-2007 © Copyright Ian D. Romanick 2007

Creating Perspective Projections (cont.)
gluPerspective

explicitly sets the field
of view.

aspect=
w
h

fovy=

16-October-2007 © Copyright Ian D. Romanick 2007

References
http://en.wikipedia.org/wiki/3D_projection (esp. Third step:

perspective transform).

http://en.wikipedia.org/wiki/Orthographic_projection_%28geometry%29

http://en.wikipedia.org/wiki/Isometric_projection

http://en.wikipedia.org/wiki/3D_projection
http://en.wikipedia.org/wiki/Orthographic_projection_%28geometry%29
http://en.wikipedia.org/wiki/Isometric_projection

16-October-2007 © Copyright Ian D. Romanick 2007

Lighting in 3D
Three types of reflection that we usually care

about.

16-October-2007 © Copyright Ian D. Romanick 2007

Lighting in 3D
Three types of reflection that we usually care

about.
● Ambient – Most “fake” of the three. Approximates

scattered, omnidirectional light in the scene.

16-October-2007 © Copyright Ian D. Romanick 2007

Lighting in 3D
Three types of reflection that we usually care

about.
● Ambient – Most “fake” of the three. Approximates

scattered, omnidirectional light in the scene.

● Diffuse – Represents light scattered uniformly by
tiny microfacets on the surface.

16-October-2007 © Copyright Ian D. Romanick 2007

Lighting in 3D
Three types of reflection that we usually care

about.
● Ambient – Most “fake” of the three. Approximates

scattered, omnidirectional light in the scene.

● Diffuse – Represents light scattered uniformly by
tiny microfacets on the surface.

● Specular – Perfect, mirror-like reflection from a
surface.

16-October-2007 © Copyright Ian D. Romanick 2007

Ambient
Sets the base light level in the scene.

● I
a
 is the intensity of the reflected ambient light.

● K
a
 is the ambient reflection property of the surface.

● L
a
 is the ambient light level in the scene.

I a=K a×La

16-October-2007 © Copyright Ian D. Romanick 2007

Diffuse
Occurs when light hits a surface and is

scattered equally in all directions.
● Accounts for most of the lighting in the scene.

● Also called “Lambertian reflection” because it is
based on Lambert's Cosine Law.

● Calculated for each light.

● Independent of viewing direction.

I d=K d×Ld×max L⋅N ,0

16-October-2007 © Copyright Ian D. Romanick 2007

Lambert's Lighting Model
What makes the equation work?

I d=K d×Ld×max L⋅N ,0

16-October-2007 © Copyright Ian D. Romanick 2007

Lambert's Lighting Model
What makes the equation work?

As the angle between the normal and the light
decreases, the amount of light reflected by the
surface increases.
● The more directly the surfaces faces the light, the

more light hits the surface.

I d=K d×Ld×max L⋅N ,0

16-October-2007 © Copyright Ian D. Romanick 2007

Specular
Light is reflected from a

surface primarily in one
direction.
● Observed light intensity

depends on viewing
direction.

● Developed by Bui-Tuong
Phong in 1973.

● R is “ideal” reflection
vector.

● Very expensive!

R=2N⋅LN−L
I s=K s×Ls×max R⋅V ,0

n

16-October-2007 © Copyright Ian D. Romanick 2007

Phong's Lighting Model
What makes the equation work?

R=2N⋅LN−L
I s=K s×Ls×max R⋅V ,0

n

16-October-2007 © Copyright Ian D. Romanick 2007

Phong's Lighting Model
What makes the equation work?

As the angle between the ideal reflection
vector, R, and the viewer, V, decreases, the
light becomes more intense.

R=2N⋅LN−L
I s=K s×Ls×max R⋅V ,0

n

16-October-2007 © Copyright Ian D. Romanick 2007

Improved Specular
James Blinn improved

Phong's model in 1977.
● Much less expensive.

● Slightly different results.
• Both are approximations!

● Lighting model used by
OpenGL.

● H is the vector half-way
between the light and
viewer.

H=
VL

2
I s=K s×Ls×max N⋅H ,0

n

16-October-2007 © Copyright Ian D. Romanick 2007

Blinn's Lighting Model
What makes the equation work?

H=
VL

2
I s=K s×Ls×max N⋅H ,0

n

16-October-2007 © Copyright Ian D. Romanick 2007

Blinn's Lighting Model
What makes the equation work?

Key observation is that H approaches N when V
approaches R (Phong's ideal reflection vector).

H=
VL

2
I s=K s×Ls×max N⋅H ,0

n

16-October-2007 © Copyright Ian D. Romanick 2007

Shininess
What is the magic “n”

factor in both
equations?

H=
VL

2
I s=K s×Ls×max N⋅H ,0

n

R=2N⋅LN−L
I s=K s×Ls×max R⋅V ,0

n

16-October-2007 © Copyright Ian D. Romanick 2007

Shininess
What is the magic “n”

factor in both
equations?
● Controls the “size” of

the specular highlight.

● As n increases, the
highlight gets smaller.
• Because the result of

the dot-product factor
gets smaller faster.

H=
VL

2
I s=K s×Ls×max N⋅H ,0

n

R=2N⋅LN−L
I s=K s×Ls×max R⋅V ,0

n

16-October-2007 © Copyright Ian D. Romanick 2007

References
http://www.delphi3d.net/articles/viewarticle.php?article=phong.htm

http://en.wikipedia.org/wiki/Lambertian_reflectance

http://www.delphi3d.net/articles/viewarticle.php?article=phong.htm
http://en.wikipedia.org/wiki/Lambertian_reflectance

16-October-2007 © Copyright Ian D. Romanick 2007

Break

16-October-2007 © Copyright Ian D. Romanick 2007

Controlling Lights in OpenGL
OpenGL lights are named GL_LIGHT0 through
GL_LIGHT7.
● GL_LIGHT0 + 3 has the same numeric value as
GL_LIGHT3.

Light parameters are set via glLight.
glLightf(GLenum light, GLenum param, GLfloat
value);

glLightfv(GLenum light, GLenum param, const
GLfloat *values);

● values points to either 1 or 4 elements depending
on param.

16-October-2007 © Copyright Ian D. Romanick 2007

Controlling Lights in OpenGL (cont.)
Lighting calculations need to be enabled.

Each light also needs to be enabled.
● Both are done with glEnable.

● Each can be disabled with glDisable.

16-October-2007 © Copyright Ian D. Romanick 2007

Example
void setup_lights(void)
{
 glEnable(GL_LIGHTING);

 glEnable(GL_LIGHT0);
 glLightfv(GL_LIGHT0, GL_AMBIENT, ambient0);
 glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse0);
 glLightfv(GL_LIGHT0, GL_SPECULAR, specular0);
 glLightfv(GL_LIGHT0, GL_POSITION, position0);

 glEnable(GL_LIGHT1);
 glLightfv(GL_LIGHT1, GL_AMBIENT, ambient1);
 glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuse1);
 glLightfv(GL_LIGHT1, GL_SPECULAR, specular1);
 glLightfv(GL_LIGHT1, GL_POSITION, position1);
}

16-October-2007 © Copyright Ian D. Romanick 2007

Lights are transformed too!
The current modelview matrix when the light's

position is set is used to transform the light.
glLightfv(GL_LIGHT0, GL_POSITION, position);
glRotatef(angle, 0.0, 0.0, 1.0);
glTranslatef(dist_x, dist_y, dist_z);
glLightfv(GL_LIGHT1, GL_POSITION, position);

● Light 0 and light 1 will be at different positions!

16-October-2007 © Copyright Ian D. Romanick 2007

Visualizing a Light
Drawing a point at the light's position can help

debug lighting problems.
set_light_transform();
glLightfv(light_name, GL_POSITION, light_pos);

glDisable(GL_LIGHTING);
glPointSize(5.0);
glBegin(GL_POINTS);
glColor3ub(0xff, 0xff, 0x00);
glVertex3fv(light_pos);
glEnd();

glEnable(GL_LIGHTING);

16-October-2007 © Copyright Ian D. Romanick 2007

Surface Material Properties
glMaterial[fi][v] is used to control

attributes of the surface.
● Cannot be called within begin / end.

glMaterialfv(GL_FRONT, GL_AMBIENT, Ka);
glMaterialfv(GL_FRONT, GL_DIFFUSE, Kd);
glMaterialfv(GL_FRONT, GL_SPECULAR, Ks);
glMaterialf(GL_FRONT, GL_SHININESS, n);
● Can set different parameters for the front and back

sides of a surface.

16-October-2007 © Copyright Ian D. Romanick 2007

Scaling = Trouble
Normals get transformed by the inverse

transpose of the modelview matrix.
● Really, this is just the upper 3x3 portion...without

the translation part.

 If the modelview matrix has a scaling factor, the
normals will also get scaled.
● So?

16-October-2007 © Copyright Ian D. Romanick 2007

Scaling = Trouble
Normals get transformed by the inverse

transpose of the modelview matrix.
● Really, this is just the upper 3x3 portion...without

the translation part.

 If the modelview matrix has a scaling factor, the
normals will also get scaled.
● So?

● only works if N and L are unit length,
and scaling ruins that.
N⋅L=cos

16-October-2007 © Copyright Ian D. Romanick 2007

Scaling = Trouble (cont.)
OpenGL has two ways to fix this.

● If the original normals are unit length and the
scaling is uniform (i.e., S

x
 = S

y
 = S

z
) enable

GL_RESCALE_NORMAL.

● In all other cases, enable GL_NORMALIZE.

Neither is free, but GL_RESCALE_NORMAL is
much less expensive.

16-October-2007 © Copyright Ian D. Romanick 2007

Scaling = Trouble (cont.)
OpenGL has two ways to fix this.

● If the original normals are unit length and the
scaling is uniform (i.e., S

x
 = S

y
 = S

z
) enable

GL_RESCALE_NORMAL.

● In all other cases, enable GL_NORMALIZE.

Neither is free, but GL_RESCALE_NORMAL is
much less expensive.
● Analyze transformation matrix and calculate the

inverse scale factor once, perform 1 vector multiply
per point vs. a dot-product, a square root, and a
divide per point.

16-October-2007 © Copyright Ian D. Romanick 2007

Light Source Attenuation
Real lights don't have infinite range.

● Objects farther away receive less light energy.

Three different attenuation modes in OpenGL:

● GL_CONSTANT_ATTENUATION (k
c
)

● GL_LINEAR_ATTENUATION (k
l
)

● GL_QUADRATIC_ATTENUATION (k
q
)

attenuation=
1

kck l×dkq×d
2

16-October-2007 © Copyright Ian D. Romanick 2007

Spot Lights
Most real lights have a direction and a “field of

view”.
● Objects outside the field of view receive no light.

● Objects far from the direction receive less light.
• Works like diffuse lighting, but instead of , we use

 (D the direction the light is pointing).

Controlled by 3 parameters:
● GL_SPOT_DIRECTION
● GL_SPOT_CUTOFF – 180° is a point light
● GL_SPOT_EXPONENT – works like n for specular

N⋅L
−L⋅D

16-October-2007 © Copyright Ian D. Romanick 2007

Shading Models
Three common shading models:

● Flat – each polygon gets a single color value.

● Gouraud – each vertex gets a color, and those
colors are interpolated across the polygon.

● Phong – Vertex properties (i.e., normals) are
interpolated across the polygon and lighting is
calculated per fragment.

The first two can be selected in OpenGL by via
glShadingModel.
● GL_FLAT for flat, and GL_SMOOTH for Gouraud.

16-October-2007 © Copyright Ian D. Romanick 2007

Break

16-October-2007 © Copyright Ian D. Romanick 2007

Planar Shadows
Simplest shadows are those projected onto a

flat plane
● As the description implies, this can be done using a

projection matrix

16-October-2007 © Copyright Ian D. Romanick 2007

Plane equation
Give a point on a plane, p, and the normal of

that plane, n, calculate the plane equation:

d=−n⋅p
n⋅pid=0

16-October-2007 © Copyright Ian D. Romanick 2007

Projection onto a plane
Given a plane, defined by n and d, and a

projection point, p, create a matrix that projects
an arbitrary point onto that plane.
● Like the projection of the view plane and the eye

point.

M=[
n⋅pd−px nx −px ny −px nz −px d

−py nx n⋅pd− py ny −py nz −py d

−p z nx −p z ny n⋅pd− pz nz −pz d

−nx −ny −n z n⋅p]

16-October-2007 © Copyright Ian D. Romanick 2007

Planar shadows
 If the plane is the ground plane, and the

projection point is the light, M is a matrix that
projects the shadow of world-space geometry
onto the ground.

But where do we insert M into the
transformation stack?

16-October-2007 © Copyright Ian D. Romanick 2007

Planar shadows
 If the plane is the ground plane, and the

projection point is the light, M is a matrix that
projects the shadow of world-space geometry
onto the ground.

But where do we insert M into the
transformation stack?
● After the object-to-world space transformations, but

before the world-to-eye space transformation.

16-October-2007 © Copyright Ian D. Romanick 2007

Next week...
Using color-materials.

 Introduction to texture mapping
● Loading texture data

● Getting a simple texture on a polygon

Assignment #2 due.

Assignment #3 assigned.

16-October-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

